
Exploiting LOLDrivers (part1)

Physical Memory Mayhem

Russell Sanford
xort @ sploit.online

About me…

LOLDriver Exploitation
Physical Memory Mayhem

About me…

Russell Sanford

• 25 Years experience in writing exploits and reverse engineering

• Published exploit author with dozens of CVE’s in network security appliances

• 12+ years experience in penetration testing and red teaming

LOLDriver Exploitation
Physical Memory Mayhem

What are LOLDrivers ?

LOLDriver Exploitation
Physical Memory Mayhem

Living Off The Land (LOTL)

Living off the land (LOTL) is a fileless malware or LOLbins cyberattack
technique where the cybercriminal uses native, legitimate tools within
the victim’s system to sustain and advance an attack.

Living Off The Land Drivers (LOLDrivers) is a community-driven project
that provides a curated list of all Windows drivers that have been
found abused by adversaries to bypass security controls and execute
malicious code.

LOLDriver Exploitation
Physical Memory Mayhem

https://www.crowdstrike.com/cybersecurity-101/malware/fileless-malware/

www.loldrivers.io

LOLDriver Exploitation
Physical Memory Mayhem

http://www.loldrivers.io/

www.loldrivers.io

• List of multiple different versions of drivers known to be
vulnerable to attacks

• Information on Microsoft Blocked Driver Listing

•Hashes, Resource Links, YARA Rules, and Vulnerable API
used

LOLDriver Exploitation
Physical Memory Mayhem

http://www.loldrivers.io/

Where/How this all began…

LOLDriver Exploitation
Physical Memory Mayhem

How I got started on this subject

• Microsoft finally got around to implementing mitigations to stop people from utilizing
Kdmapper

• Red Teaming friend asked me if I could look into writing a new replacement unsigned
driver mapper utilizing known LOLDrivers for testing EDR/XDR solutions

• I Quickly learned that there was only limited relevant and up-to-date information to be
learned from the Penetration Testing/Red Teaming communities

• Exploiting these types of vulnerabilities was largely pioneered by members of the gaming
communities

LOLDriver Exploitation
Physical Memory Mayhem

Let’s Begin… :D

LOLDriver Exploitation
Physical Memory Mayhem

Warning!
The exploitation tricks your going to see are not

being used in ANY public exploits I could find.

LOLDriver Exploitation
Physical Memory Mayhem

Getting Setup

LOLDriver Exploitation
Physical Memory Mayhem

Enabling DbgPrint Messages from the Windows Kernel
Go to path,

• “HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Debug Print Filter”.

• If "Debug Print Filter" is not present then create it.

• Add value “DEFAULT” : REG_DWORD : 0xFFFFFFFF and then reboot.

LOLDriver Exploitation
Physical Memory Mayhem

Getting Setup For Visual Studio Driver Development

LOLDriver Exploitation
Physical Memory Mayhem

Getting Setup for Visual Studio Driver Development

LOLDriver Exploitation
Physical Memory Mayhem

Getting Setup for Visual Studio Driver Development

LOLDriver Exploitation
Physical Memory Mayhem

Setting up Windows Kernel Debugging over Serial

LOLDriver Exploitation
Physical Memory Mayhem

Setting Up VMWare – Adding a Serial Port for kernel debugging

LOLDriver Exploitation
Physical Memory Mayhem

LOLDriver Exploitation
Physical Memory Mayhem

Configuring WinDBG

VMWare
Serial Port
(Named
Pipe)

LOLDriver Exploitation
Physical Memory Mayhem

• Configuring VMware

Setting Up WinDBG for Remote Serial Debugging

LOLDriver Exploitation
Physical Memory Mayhem

How Communication with System Drivers works

LOLDriver Exploitation
Physical Memory Mayhem

LOLDriver Exploitation
Physical Memory Mayhem

• Communicating with SYSTEM Drivers – IOCTL calls

Userland (Ring3) <-> Kernel Land (Ring 0) communication - IOCTL

LOLDriver Exploitation
Physical Memory Mayhem

Userland (Ring3) <-> Kernel Land (Ring 0) communication – IOCTL

1) A handle is opened to

A device driver’s Symbolic

Name

2) IOCTL Request is made

With Input and Output

Buffers using handle

3) Kernel Driver returns

Response in Output buffer

4) When all communication has ended

Handle to driver is closed

LOLDriver Exploitation
Physical Memory Mayhem

Userland (Ring3) <-> Kernel Land (Ring 0) communication – IOCTL

Example:

HANDLE Handle = CreateFile("\\\\.\\IOCTL", ..., 0, NULL);

DWORD version, junk;

if (DeviceIoControl(Handle, IOCTL_GET_VERSION_BUFFERED,

NULL, 0, &version, sizeof(version), &junk, NULL))

printf("IOCTL.SYS version %d.%2d\n", HIWORD(version),

LOWORD(version));

else

printf("Error %d in IOCTL_GET_VERSION_BUFFERED call\n",

GetLastError());

LOLDriver Exploitation
Physical Memory Mayhem

LOLDriver Exploitation
Physical Memory Mayhem

LOLDriver Exploitation
Physical Memory Mayhem

Communicating with SYSTEM Drivers – IOCTL calls

1) A HANDLE is
opened to the
Driver

LOLDriver Exploitation
Physical Memory Mayhem

Communicating with SYSTEM Drivers – IOCTL calls

1) A HANDLE is
opened to
the Driver

2) A Request is
made to the
Driver using
an IOCTL call

LOLDriver Exploitation
Physical Memory Mayhem

Communicating with SYSTEM Drivers – IOCTL calls

1) A HANDLE is
opened to
the Driver

2) A Request is
made to the
Driver using
an IOCTL call

3) When all communications are done
The HANDLE to the Driver is closed.

LOLDriver Exploitation
Physical Memory Mayhem

Communicating with SYSTEM Drivers – IOCTL calls

INPUT Buffer / Buffer Size

Request from USERLAND to KERNELAND Driver

LOLDriver Exploitation
Physical Memory Mayhem

Communicating with SYSTEM Drivers – IOCTL calls

OUTPUT Buffer / Buffer Size

Response from KERNELAND Driver to USERLAND

Exploited Windows API Functions Providing
Access to Physical Memory

LOLDriver Exploitation
Physical Memory Mayhem

Common Vulnerable API

Access to Physical Memory PCI Device Access

MmMapIOSpace() HalGetBusDataByOffset()

ZwMapViewOfSection() HalSetBusDataByOffset()

<- in/out port communication ->

Physical Memory Address Resolving Memory Copying Operations

memcpy()

MSR Register Access memmove()

__readmsr()/__writemsr()

And Much More!

LOLDriver Exploitation
Physical Memory Mayhem

Common Vulnerable API

This presentation is my analysis of what could be done using the commonly
found API allowing for: Access to Physical Memory

• MmMapIOSpace()

• ZwMapViewOfSection()

* Note: There are several sub-variants of these functions that do/do-not allow
access to cached and/or locked operations

LOLDriver Exploitation
Physical Memory Mayhem

LOLDriver Exploitation
Physical Memory Mayhem

MmMapIoSpace()

LOLDriver Exploitation
Physical Memory Mayhem

MmMapIoSpace()

Note: Microsoft has blocked MmMapIoSpace() from being able to access page
tables directly. This can be circumvented by using MmMapIoSpace() in a provider-
>victim model in which shellcode is introduced into another driver fully capable of
accessing these blocked regions of code – staging 101.

LOLDriver Exploitation
Physical Memory Mayhem

ZwMapViewOfSection()

ZwMapViewOfSection()

LOLDriver Exploitation
Physical Memory Mayhem

Creates a “View” of a section

View can be mapped to ANY location in
memory

Can be READ only, READ|WRITE, or WRITE
only

Write operations will update address
pointed TO when WRITE is enabled

Some Drivers offer Phsical Addressing to Virtual Addressing or
vice-versa

IOCTL calls are sometime offered to implement:

• VA->PA (calls MmGetPhysicalAddress())

• VA->Pfn or VA-Pte (Page Frame Number / Page Table Entry)

LOLDriver Exploitation
Physical Memory Mayhem

Vulnerable Libraries Facilitating Exploitation

LOLDriver Exploitation
Physical Memory Mayhem

Known Vulnerable Libraries with Exploitation Primitives

• WinIO

• MAPMEM

• PHYMEM

• RWEverything

• WINRING0

LOLDriver Exploitation
Physical Memory Mayhem

WINIO was found to be the more popularly re-used
library and so the exploitation used/demonstrated in
this presentation will be focused on abusing it.

Culprit Drivers – ‘Providers’

Many of the vulnerable LOLDrivers fall into the tools that provide the following functionalities:

Bios flashing

Gaming Tuning

RGB Keyboard utilities

Core Temperature Controllers

Diagnostic Tools

Forensic Tools

GPU utilities

Performance Tools

Mimikatz

Rootkit Detection Utilities

Process Exploring Tools

LOLDriver Exploitation
Physical Memory Mayhem

Unsigned Driver Mappers Exploiting these APIs

LOLDriver Exploitation
Physical Memory Mayhem

Public Tools for unsigned driver loading

KDU (hfiref0x) GDRV-loader (alxbrn)

Voidmap (SamuelTulach) DSEFix (hfiref0x)

Kdmapper (TheCruz/z175) physmeme

TDL (hfiref0x)

Nasa mapper (xeroxz) many more….

Efi-mapper (SamuelTulach) http://www.unknowncheats.me

LOLDriver Exploitation
Physical Memory Mayhem

http://www.unknowncheats.me/

Resources:
LOLDrivers.com
Massive collection of
Drivers utilizing
Exploitable API

Gaming Forums!
Unknown Cheats
By far best source
Of information
On exploitation
Of LOLDrivers

LOLDriver Exploitation
Physical Memory Mayhem

https://www.unknowncheats.me/

https://www.unknowncheats.me/

Blacklisted Drivers

LOLDriver Exploitation
Physical Memory Mayhem

Dealing with revoked cert drivers…

We can disable the Driver Blocklist and

Run blocked drivers 

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\CI\Config]

"VulnerableDriverBlocklistEnable"=dword:00000000

or

reg add HKLM\SYSTEM\CurrentControlSet\CI\Config /v "VulnerableDriverBlocklistEnable" /t REG_DWORD /d 0
/f

LOLDriver Exploitation
Physical Memory Mayhem

Physical Memory vs Virtual Memory

LOLDriver Exploitation
Physical Memory Mayhem

Physical Memory vs Virtual Memory

LOLDriver Exploitation
Physical Memory Mayhem

Cached
Pages

Let’s start breaking down exploitation tactics…

LOLDriver Exploitation
Physical Memory Mayhem

The Kernel Pool

LOLDriver Exploitation
Physical Memory Mayhem

Welcome to the Pool Party – Kernel Pool Explained

LOLDriver Exploitation
Physical Memory Mayhem

Kernel Pool Allocation Functions:

ExAllocatePool()
ExAllocatePool2()
ExAllocatePool3()
ExAllocatePoolWithTag()
ExAllocatePoolWithQuotaTag()
ExAllocatePoolWithTagPriority()
+ more…

Kernel Pool Allocations are made with an associated ‘tag’ that is either provided
or generated depending on which API is utilized

LOLDriver Exploitation
Physical Memory Mayhem

Kernel Pool Allocation with ‘tags’:

Example Allocation with ‘abcd’ tag header:

LOLDriver Exploitation
Physical Memory Mayhem

Example Kernel Pool Allocation for Windows TOKEN with ‘tag’:

LOLDriver Exploitation
Physical Memory Mayhem

Note: There are tens of thousands of different Pool Tag’s for various Windows
Objects – Everything's got its own memory allocation tag type!

The Kernel Pool Exploitation

‘Proc’ Pool Scanning Technique

LOLDriver Exploitation
Physical Memory Mayhem

EPROCESS and the ‘Proc’ Pool Header

LOLDriver Exploitation
Physical Memory Mayhem

EPROCESS and the ‘Proc’ Pool Header – Preceeds EPROCESS structures

LOLDriver Exploitation
Physical Memory Mayhem

Kernel Memory Pools and the ‘Proc’ Pool Header…

• Pool Headers are allocated on 0x10 offsets

• The tag is located 4 bytes in

EPROCESS Structure Scanning Pseudocode:

For (i=0; I < 0x2000000; I += 0x10) {

if (memcmp((buffer+i+4), “Proc”) == 0) {

// found proc pool header – print info

}

}

LOLDriver Exploitation
Physical Memory Mayhem

Scanning for ‘Proc’ pool headers (EPROCESS structures)

LOLDriver Exploitation
Physical Memory Mayhem

DEMO!

PML4 Page Tables

LOLDriver Exploitation
Physical Memory Mayhem

Exploiting Windows Signed
Drivers for PrivEsc

LOLDriver Exploitation
Physical Memory Mayhem

4 Level Page Translation (4k page)

PML4E_Offset = (ADDR >>39) & 0x1FF
PDPE_Offset = (ADDR >>30) & 0x1FF
PDE_Offset = (ADDR >>21) & 0x1FF
PT_OFFset (ADDR >>12) & 0x1FF

PysAddr_Offset = 0x1FFFFFFF

UINT64 PML4E = CR3 + (((address_to_lookup >> 39) & 0x1ff) * sizeof(DWORD64));

UINT64 PDPE = (read_UINT64_from_4k_page_phys_memory((PUINT64)PML4E) & 0x00FFFFFFFFFFF000) + (((address_to_lookup >> 30) & 0x1ff) *
sizeof(DWORD64));

UINT64 PDT = (read_UINT64_from_4k_page_phys_memory((PUINT64)PDPE) & 0x00FFFFFFFFFFF000) + (((address_to_lookup >> 21) & 0x1ff) *
sizeof(DWORD64));

UINT64 PT = (read_UINT64_from_4k_page_phys_memory((PUINT64)PDT) & 0x00FFFFFFFFFFF000) + (((address_to_lookup >> 12) & 0x1ff) *
sizeof(DWORD64));

final_addr_phys_ptr = (PT & 0x000FFFFFFFF00000) + (address_to_lookup & 0xFFFFF);

LOLDriver Exploitation
Physical Memory Mayhem

4 Level Page Translation (4k page)

LOLDriver Exploitation
Physical Memory Mayhem

LOLDriver Exploitation
Physical Memory Mayhem

HCVI / VBA Protections – Extended Page Tables

LOLDriver Exploitation
Physical Memory Mayhem

Finding Cr3’s value to walk tables

LOLDriver Exploitation
Physical Memory Mayhem

Finding Cr3 through ‘Proc’ (EPROCESS) pool scanning

LOLDriver Exploitation
Physical Memory Mayhem

Finding Cr3 through EPROCESS scanning…
• We can scan for ‘Proc’ pool headers which identify

EPROCESS structures

• The First Part of an EPROCESS structure is a KPROCESS structure

• The KPROCESS Structure contains DirectoryTableBase (CR3 register
value for process)

LOLDriver Exploitation
Physical Memory Mayhem

Finding Cr3 through the DOS “LOW STUB”

LOLDriver Exploitation
Physical Memory Mayhem

LOLDriver Exploitation
Physical Memory Mayhem

DEMO!

CR3 “Low Stub” trick courtesy of pcileech Direct
Memory Attack (DMA) software

Designed for cool hardware

hacking implant’s

like the PCI Squirrel

https://github.com/ufrisk/pcileech

LOLDriver Exploitation
Physical Memory Mayhem

https://github.com/ufrisk/pcileech

typedef struct _PROCESSOR_START_BLOCK {

FAR_JMP_16 Jmp;

ULONG CompletionFlag;

PSEUDO_DESCRIPTOR_32 Gdt32;

PSEUDO_DESCRIPTOR_32 Idt32;

KGDTENTRY64 Gdt[PSB_GDT32_MAX + 1];

ULONG64 TiledCr3;

FAR_TARGET_32 PmTarget;

FAR_TARGET_32 LmIdentityTarget;

PVOID LmTarget;

PPROCESSOR_START_BLOCK SelfMap;

ULONG64 MsrPat;

ULONG64 MsrEFER;

KPROCESSOR_STATE ProcessorState;

} PROCESSOR_START_BLOCK;

CR3 “Low Stub” trick

The DOS “Low Stub” is the area of physical
memory between 0-0x20000

In this range, as the computer boots, a
structure called PROCESSOR_START_BLOCK
is stored in memory

It is used when resuming from ACPI Sleep
Vector amongst other things

LOLDriver Exploitation
Physical Memory Mayhem

CR3 “Low Stub” trick
The _PROCESSOR_START_BLOCK structure
has a structure named KSPECIAL_REGISTERS

KSPECIAL_REGISTERS contains the kernel’s
Cr3 value which points to the start of the
page tables

LOLDriver Exploitation
Physical Memory Mayhem

typedef struct _KPROCESSOR_STATE
{

CONTEXT ContextFrame;
KSPECIAL_REGISTERS SpecialRegisters;

} KPROCESSOR_STATE,
*PKPROCESSOR_STATE;

typedef struct _KSPECIAL_REGISTERS
{

ULONG Cr0;
ULONG Cr2;
ULONG Cr3;
ULONG Cr4;
ULONG KernelDr0;
ULONG KernelDr1;
ULONG KernelDr2;
ULONG KernelDr3;
ULONG KernelDr6;
ULONG KernelDr7;
DESCRIPTOR Gdtr;
DESCRIPTOR Idtr;
WORD Tr;
WORD Ldtr;
ULONG Reserved[6];

} KSPECIAL_REGISTERS, *PKSPECIAL_REGISTERS;

CR3 “Low Stub” trick

LOLDriver Exploitation
Physical Memory Mayhem

__try {
while (offset < 0x100000) {

offset += 0x1000;

if (0x00000001000600E9 != (0xffffffffffff00ff & \
(UINT64)(pbLowStub1M + offset))) //PROCESSOR_START_BLOCK->Jmp

continue;

if (0xfffff80000000000 != (0xfffff80000000003 & \
(UINT64)(pbLowStub1M + offset + FIELD_OFFSET(PROCESSOR_START_BLOCK, LmTarget))))

continue;

if (0xffffff0000000fff & *(UINT64*)(pbLowStub1M + offset + cr3_offset))
continue;

PML4 = *(UINT64*)(pbLowStub1M + offset + cr3_offset);
break;

} }

CR3 “Low Stub” trick

LOLDriver Exploitation
Physical Memory Mayhem

__try {

while (offset < 0x100000) {
offset += 0x1000;

if (0x00000001000600E9 != (0xffffffffffff00ff & \
(UINT64)(pbLowStub1M + offset))) //PROCESSOR_START_BLOCK->Jmp

continue;

if (0xfffff80000000000 != (0xfffff80000000003 & \
(UINT64)(pbLowStub1M + offset + FIELD_OFFSET(PROCESSOR_START_BLOCK, LmTarget))))

continue;

if (0xffffff0000000fff & *(UINT64*)(pbLowStub1M + offset + cr3_offset))
continue;

PML4 = *(UINT64*)(pbLowStub1M + offset + cr3_offset);
break;

} }

__try {

while (offset < 0x100000) {
offset += 0x1000;

if (0x00000001000600E9 != (0xffffffffffff00ff & \
(UINT64)(pbLowStub1M + offset))) //PROCESSOR_START_BLOCK->Jmp

continue;

if (0xfffff80000000000 != (0xfffff80000000003 & \
(UINT64)(pbLowStub1M + offset + FIELD_OFFSET(PROCESSOR_START_BLOCK, LmTarget))))

continue;

if (0xffffff0000000fff & *(UINT64*)(pbLowStub1M + offset + cr3_offset))
continue;

PML4 = *(UINT64*)(pbLowStub1M + offset + cr3_offset);
break;

} }

CR3 “Low Stub” trick

LOLDriver Exploitation
Physical Memory Mayhem

__try {

while (offset < 0x100000) {
offset += 0x1000;

if (0x00000001000600E9 != (0xffffffffffff00ff & \
(UINT64)(pbLowStub1M + offset))) //PROCESSOR_START_BLOCK->Jmp

continue;

if (0xfffff80000000000 != (0xfffff80000000003 & \
(UINT64)(pbLowStub1M + offset + FIELD_OFFSET(PROCESSOR_START_BLOCK,

LmTarget))))
continue;

if (0xffffff0000000fff & *(UINT64*)(pbLowStub1M + offset + cr3_offset))
continue;

PML4 = *(UINT64*)(pbLowStub1M + offset + cr3_offset);
break;

} }

CR3 “Low Stub” trick

LOLDriver Exploitation
Physical Memory Mayhem

CR3 “Low Stub” trick

LOLDriver Exploitation
Physical Memory Mayhem

__try {

while (offset < 0x100000) {
offset += 0x1000;

if (0x00000001000600E9 != (0xffffffffffff00ff & \
(UINT64)(pbLowStub1M + offset))) //PROCESSOR_START_BLOCK->Jmp

continue;

if (0xfffff80000000000 != (0xfffff80000000003 & \
(UINT64)(pbLowStub1M + offset + FIELD_OFFSET(PROCESSOR_START_BLOCK, LmTarget))))

continue;

if (0xffffff0000000fff & *(UINT64*)(pbLowStub1M + offset + cr3_offset))
continue;

PML4 = *(UINT64*)(pbLowStub1M + offset + cr3_offset);
break;

} }

CR3 “Low Stub” trick

LOLDriver Exploitation
Physical Memory Mayhem

__try {

while (offset < 0x100000) {
offset += 0x1000;

if (0x00000001000600E9 != (0xffffffffffff00ff & \
(UINT64)(pbLowStub1M + offset))) //PROCESSOR_START_BLOCK->Jmp

continue;

if (0xfffff80000000000 != (0xfffff80000000003 & \
(UINT64)(pbLowStub1M + offset + FIELD_OFFSET(PROCESSOR_START_BLOCK, LmTarget))))

continue;

if (0xffffff0000000fff & *(UINT64*)(pbLowStub1M + offset + cr3_offset))
continue;

PML4 = *(UINT64*)(pbLowStub1M + offset + cr3_offset);
break;

} }

Building Block API Functions for Exploitation

Building PA to VA translation functions

LOLDriver Exploitation
Physical Memory Mayhem

LOLDriver Exploitation
Physical Memory Mayhem

LOLDriver Exploitation
Physical Memory Mayhem

LOLDriver Exploitation
Physical Memory Mayhem

LOLDriver Exploitation
Physical Memory Mayhem

LOLDriver Exploitation
Physical Memory Mayhem

Walking the tables to PID 4 (SYSTEM EPROCSS structure)

LOLDriver Exploitation
Physical Memory Mayhem

DEMO!

Building Block API Functions for Exploitation

Building Pfn (Page Frame Numer) lookup
functions

LOLDriver Exploitation
Physical Memory Mayhem

MiGetPteAddress – Assembly contains Hardcoded Pte Base in Memory

1) We calculate the address of MiGetPteAddress in memory

LOLDriver Exploitation
Physical Memory Mayhem

MiGetPteAddress – Assembly contains Hardcoded Pte Base in Memory

2) We Extract the QWORD value of the PFN Table Base from the function

LOLDriver Exploitation
Physical Memory Mayhem

MiGetPteAddress() – decompiled to C

(Now we can write our own PFN Table lookup routine!)

LOLDriver Exploitation
Physical Memory Mayhem

Address we want to
find Page Frame
Number for

Note: PFN’s are multiplied by 0x1000 (4KB) to find the physical address of the next paging
structure.

HCVI/VBS

HVCI is a kernel hypervisor

Technology that extends page tables

Up additional levels so you have

5-layer page translation.

Here the kernel can request that the

Hypervisor make’s sure certain pages

are protected (Page Guard) and

Tricks like PTE overwrites can’t occur

(Priv Esc technique to make pages

executable)

LOLDriver Exploitation
Physical Memory Mayhem

HCVI/VBS

HVCI is employed through the Windows

Hypervisor’s usage of two abstract

Kernels known as VTL 0 and VTL 1 that

Operate above the running kernel.

This model offers many protections to

Prevent userland to kernel land

Privilege escalations

LOLDriver Exploitation
Physical Memory Mayhem

Exploitation – Token Theft Priv Esc (SYSTEM)

LOLDriver Exploitation
Physical Memory Mayhem

Locating SYSTEM’s EPROCESS structure from Userland
DHA_Userland_Find_SYSTEM_EPROCESS.exe explained… (c++)

STEP 1: Finding Windows Kernel Base

• The EnumDeviceDrivers() function will populate a list of loaded system modules
• The first entry [0] contains the loading address of ntosknrl.exe (windows kernel)

LOLDriver Exploitation
Physical Memory Mayhem

Locating SYSTEM’s EPROCESS structure from Userland
DHA_Userland_Find_SYSTEM_EPROCESS.exe explained… (c++)

STEP 2: Finding SYSTEM’s EPROCCESS structure offset

• We use LoadLibraryA() to load ntoskrnl.exe (Normally used for DLL’s – but .EXE, .SYS, and
.DLL are the same PE file format

• We use GetProcAddress() to find the export for PsInitialSystemProcess (EPROCESS pointer
offset)

(GetProcAddress() is normally used to look
up function addresses – but what it’s
ACTUALLY doing is looking up EXPORT
names/addresses )

• We Add Kernelbase + PsInitialSystemProcess together for pointer to EPROCESS in memory

LOLDriver Exploitation
Physical Memory Mayhem

LOLDriver Exploitation
Physical Memory Mayhem

• Privilege Escalation via Token theft 1) We Copy
Token from
EPROCESS w/
PID #4
(SYSTEM)

LOLDriver Exploitation
Physical Memory Mayhem

• Privilege Escalation via Token theft 1) We Copy
Token from
EPROCESS w/
PID #4
(SYSTEM)

2) We Locate
our EPROCESS
PID #

LOLDriver Exploitation
Physical Memory Mayhem

• Privilege Escalation via Token theft 1) We Copy
Token from
EPROCESS w/
PID #4
(SYSTEM)

2) We Locate
our EPROCESS
PID #

3) We copy
SYSTEM Token
into our
EPROCESS

LOLDriver Exploitation
Physical Memory Mayhem

• Privilege Escalation via Token theft

Now running as
SYSTEM

LOLDriver Exploitation
Physical Memory Mayhem

• Privilege Escalation via Token theft

DEMO!

Exploitation – The Provider / Victim model

LOLDriver Exploitation
Physical Memory Mayhem

LOLDriver Exploitation
Physical Memory Mayhem

• How KDU Works… The Victim-Provider Model

LOLDriver Exploitation
Physical Memory Mayhem

• How KDU Works… The Victim-Provider Model

LOLDriver Exploitation
Physical Memory Mayhem

• How KDU Works… The Victim-Provider Model

LOLDriver Exploitation
Physical Memory Mayhem

• How KDU Works… The Victim-Provider Model

LOLDriver Exploitation
Physical Memory Mayhem

• How KDU Works… The Victim-Provider Model

LOLDriver Exploitation
Physical Memory Mayhem

typedef struct _KDU_PROVIDER {

struct {

provRegisterDriver RegisterDriver; //optional

provUnregisterDriver UnregisterDriver; //optional

provAllocateKernelVM AllocateKernelVM; //optional

provFreeKernelVM FreeKernelVM; //optional

provReadKernelVM ReadKernelVM;

provWriteKernelVM WriteKernelVM;

provVirtualToPhysical VirtualToPhysical; //optional

provReadControlRegister ReadControlRegister; //optional

provQueryPML4 QueryPML4Value; //optional

provReadPhysicalMemory ReadPhysicalMemory; //optional

provWritePhysicalMemory WritePhysicalMemory; //optional

} Callbacks;

} KDU_PROVIDER, * PKDU_PROVIDER;

KDU Provider BYOVD Model

LOLDriver Exploitation
Physical Memory Mayhem

Windows 11 – Working Providers

#1 – IQVM64.sys

#13 – AsIO2.sys

#15 – GmerDrv.sys

#20 – DBUtilDrv2.sys

#22 – AsIO3.sys

#26 – impoutx64.sys

#27 – DirectIo64.sys

#29 – ALSysIo64.sys

KDU Provider BYOVD Model

Win 11 (checked 07/11/23_

PROCEXP152.SYS – Process Explorer – KDU’s Victim Driver

It’s an old binary – so that means it was compiled without Code Integrity (CI) checks that
prevent shellcode/ROP (ROP Is dead for other Reasons – see: KVA Shadow Stack)

Set to have INIT section that is RWX – we can overwrite the IRP handlers for handlers such
as IRP_MJ_CREATE

IRP_MJ_CREATE is triggered when you open \\.\PROCEXP152 with CreateFile (opening the
file)

This means we can write shellcode in there to do anything we want.

LOLDriver Exploitation
Physical Memory Mayhem

//./PROCEXP152

Exploitation – Large Page Drivers

LOLDriver Exploitation
Physical Memory Mayhem

Large Page Drivers

It was discovered that Drivers could be added to a special list designated in the windows registry for
system drivers known as ‘Large Page Drivers’

These Large Page Drivers – use large (2 MB) pages instead of the standard 4KB (0x1000 byte) pages.

In doing so – They combine the .TEXT (RX) and .DATA (RW) sections of an executable into a single
section

That is both RW and RX (so RWX)

Example:

GitHub - VollRagm/lpmapper: A mapper that maps shellcode into loaded large page drivers

LOLDriver Exploitation
Physical Memory Mayhem

https://github.com/VollRagm/lpmapper

Large Page Drivers

LOLDriver Exploitation
Physical Memory Mayhem

Exploitation – Protected Process Lights (PPL)

LOLDriver Exploitation
Physical Memory Mayhem

• Protected Process Light (PPL) technology is used for controlling and protecting running processes and
protecting them from infection by malicious code and the potentially harmful effects of other processes.
These processes include:

• Shutdown

• Stream deployment

• Access to virtual memory

• Debugging

• Copying of descriptors

• Changing the memory working set

• Changing and receiving information about the current state of the thread

• Impersonation of threads (running process threads under a different account)

READ MORE HERE: https://spikysabra.gitbook.io/kernelcactus/pocs/ppl-toggling

LOLDriver Exploitation
Physical Memory Mayhem

PPL Elevation Since we can modify EPROCESS and its fields…

Note: Ounce we toggle a
process to be PPL
we can dump LSASS for
passwords!

https://spikysabra.gitbook.io/kernelcactus/pocs/ppl-toggling

Exploitation – Handle elevation

LOLDriver Exploitation
Physical Memory Mayhem

Handle elevation
Since we can modify EPROCESS and its fields…

• Each _EPROCESS structure holds within it a pointer to the _HANDLE_TABLE object, Named the
ObjectTable.

• This specific pointer, is to the head of the Handle Table, and contains a list of handles which appear
one after the other in the memory.

• Given read and write access to the _HANDLE_TABLE_ENTRY object itself, one can edit the
GrantedAccessBits

• handle created for SYNCHRONIZE, READ_CONTROL, QUERY_LIMITED_INFORMATION, can be
escalated to FULL_CONTROL

READ MORE HERE: https://spikysabra.gitbook.io/kernelcactus/pocs/handle-elevation

LOLDriver Exploitation
Physical Memory Mayhem

https://spikysabra.gitbook.io/kernelcactus/pocs/handle-elevation

Next Talk:

Kernel Talks 0x04
BADUSB and the Gadget-FS filesystem

LOLDriver Exploitation
Physical Memory Mayhem

Thanks!

Russell Sanford
xort@sploit.online

LOLDriver Exploitation
Physical Memory Mayhem

mailto:xort@sploit.online

